NE 583 Radiation Transport

Final Exam (Take Home)

Due midnight, Tuesday, December 13, 2022

1. Using ONLY EXCEL (with no external macros-start with an empty worksheet) and the recurrence relation for Legendre polynomials:

$$
P_{n}(x)=\frac{(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)}{n}
$$

find the POSITIVE zeros of $\mathrm{P}_{18}(\mathrm{x})$ in the range $(0,1)$. (Include the spreadsheet with your submission-in fact, it can be the whole submission for this problem.)
2. I left out of the point kinetics derivation how the term:

$$
\beta_{i}\left\langle v \sigma_{f} \psi\right\rangle
$$

on slide 12-16 becomes the term:

$$
\frac{\beta_{i}}{\Lambda} n(t)
$$

on slide 12-12. Show that these are the same. (You may use any equation from Lecture 12 without having to derive it.)
3. Solve the Class Exercise defined in Slide 9 for the average flux in Group 1 in the range $x=45$ to $x=50 \mathrm{~cm}$. using integral transport theory. (HINT: The discrete ordinates solution for S16 is 0.00226 , so you should be close to this.)
4. Verify Eqns. 5-38 and 5-39 in the text from Eq. 5.37. I am going to grade this fairly strictly. Do not skip steps. Specifically:
a. Make no physically simplifying assumptions or physical arguments.
b. Do not utilize the recurrence relation A-43 unless you have a term that fits the form EXACTLY.

Extra credit: Why did they choose $\mathrm{mu}_{1}=0.2182179$ for the S_{8} quadrature in Table 4-1?

IMPORTANT: Include with your submission a statement that this test is your OWN WORK, and you neither sought nor gave any help from/to anyone but Dr Pevey.
5.1.53 $\quad 0 \leq x \leq 1$
$E_{1}(x)+\ln x=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+\epsilon(x)$ $|\epsilon(x)|<2 \times 10^{-7}$

$$
\begin{array}{llll}
a_{0}=-.57721 & 566 & & a_{3}= \\
a_{1}= & .05519 & 968 \\
a_{2}=-.29999 & 193 & a_{4}=-.00976 & 004 \\
a_{5} & 055 & a_{5}= & .00107857
\end{array}
$$

5.1.54 $\quad 1 \leq x<\infty$

$$
\begin{gathered}
x e^{x} E_{1}(x)=\frac{x^{2}+a_{1} x+a_{2}}{x^{2}+b_{1} x+b_{2}}+\epsilon(x) \\
|\epsilon(x)|<5 \times 10^{-5} \\
a_{1}=2.334733 \quad b_{1}=3.330657 \\
a_{2}=.250621 \quad b_{2}=1.681534
\end{gathered}
$$

5.1.14

$$
E_{n+1}(z)=\frac{1}{n}\left[e^{-z}-z E_{n}(z)\right](n=1,2,3, \ldots)
$$

